Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 732-736, 2019.
Article in Chinese | WPRIM | ID: wpr-796402

ABSTRACT

Objective@#To observe the changes of extracellular histones and pulmonary microvascular endothelial cells, and study the activating role of extracellular histones to pulmonary microvascular endothelial cells in the pathogenesis of acute respiratory distress syndrome (ARDS) .@*Methods@#The correlation of the severity of acute lung injury with extracellular histones and pulmonary endothelial damage was studied through mice model, and acute lung injury was produced by aspiration of different concentrations of hydrochloric acid (0.01、0.1、0.3 and 0.5 mol/L, 2 ml/kg). Tumor necrosis factor-α (TNF-α), soluble thrombomodulin (sTM) and lung pathological change were measured. The pro-inflammatory role of extracellular histones was tested by injecting calf thymus histones (CTH) or specific anti-H4 antibody through tail vein. The direct activating role of extracellular histones to pulmonary microvascular endothelial cells was studied through pulmonary endothelial model.@*Results@#The extracellular histones in plasma were increased obviously 6h after aspiration of different concentrations of hydrochloric acid in mice. A positive correlation was seen between extracellular histones and concentrations of aspirated hydrochloric acid (r=0.9180, P<0.05). The sTM in plasma also showed a positive correlation with concentrations of aspirated hydrochloric acid (r=0.8701, P<0.05). Merely administering CTH could not only increase TNF-α and sTM in plasma but also cause obvious lung injury, while specific anti-H4 antibody could relieve the inflammation and lung damage caused by CTH. Extracellular histones could directly damage pulmonary endothelial cells to release sTM in pulmonary endothelial model in vitro, while anti-H4 antibody could protect the endothelial cells.@*Conclusion@#Extracellular histones are the key endogenic inflammatory mediators during the pathogenesis of ARDS caused by aspiration of hydrochloric acid, which could promote inflammation by directly activating pulmonary endothelial cells.

SELECTION OF CITATIONS
SEARCH DETAIL